Roma, 10 giu. - (Adnkronos) - Spesso si invoca l’enorme numero di granelli di sabbia che coprono le spiagge del nostro pianeta per provare a immaginare l’altrettanto vasta moltitudine di stelle che popolano l’universo. E se qualcuno dei pianeti intorno a queste stelle fosse coperto – o circondato – di sabbia? È l’interessante scenario che emerge da un nuovo studio basato sulle osservazioni di due pianeti extrasolari realizzate con il telescopio spaziale James Webb (JWST), i cui risultati sono stati pubblicati oggi sulla rivista Nature.
I pianeti in questione orbitano attorno alla stella YSES-1, un giovane sole con un’età di appena 16,7 milioni di anni, che si trova a circa 300 anni luce dal nostro Sistema solare. Osservando direttamente la luce di questi esopianeti, un gruppo di ricerca internazionale guidato dall’astrofisica Kielan Hoch dello Space Telescope Science Institute di Baltimora, negli Stati Uniti, ha scoperto che l’atmosfera di uno dei due pianeti contiene nubi di silicati, composte da minerali che le conferiscono un colore rossiccio. L’altro pianeta del sistema, invece, appare circondato da un disco circumplanetario, anch’esso formato da silicati, dal quale potrebbero in futuro prendere forma corpi più piccoli, come ad esempio delle lune.
La scoperta, che sarà presentata oggi durante il 246° meeting dell’American Astronomical Society in corso ad Anchorage, in Alaska, offre nuove prospettive sulle fasi iniziali della formazione dei sistemi planetari come il nostro, fornendo a ricercatrici e ricercatori l’opportunità di studiare in tempo quasi reale come nasce e si evolve un pianeta simile a Giove.“Osservare le nubi di silicati, che sono praticamente delle nuvole di sabbia, nelle atmosfere dei pianeti extrasolari è importante perché ci aiuta a capire meglio come funzionano i processi atmosferici e come si formano i pianeti, un tema ancora in discussione poiché non c’è accordo sui diversi modelli”, spiega la coautrice Valentina D’Orazi, ricercatrice presso l’Istituto Nazionale di Astrofisica (INAF) e l’Università di Roma Tor Vergata, attualmente visiting research scholar all’Università del Texas a Austin nell’ambito del programma Fulbright. “La scoperta di queste nuvole di sabbia, che restano in alto grazie a un ciclo di sublimazione e condensazione simile a quello dell’acqua sulla Terra, ci svela meccanismi complessi di trasporto e formazione nell’atmosfera. Questo ci permette di migliorare i nostri modelli sui processi climatici e chimici in ambienti molto diversi da quelli del Sistema solare, ampliando così la nostra conoscenza di questi sistemi”.
Si tratta di due pianeti giganti gassosi, con masse pari a 14 volte quella di Giove per YSES-1 c e a 6 volte quella di Giove per YSES-1 b. Entrambi i pianeti si trovano molto lontano dalla loro stella, a distanze circa 5 e 10 volte superiori rispetto alla distanza tra il Sole e Nettuno, il pianeta più esterno del Sistema solare. È proprio la loro orbita molto estesa che ha permesso al team di osservare i due pianeti con JWST attraverso la tecnica dell’imaging diretto, la cui applicazione è ancora oggi limitata a un piccolo numero di pianeti con caratteristiche molto particolari. Lo studio dimostra la capacità del potente telescopio spaziale di fornire dati spettrali di alta qualità per esopianeti osservati attraverso questa tecnica, aprendo nuove strade per lo studio delle atmosfere e degli ambienti circumstellari.
La presenza di nubi di silicati nelle atmosfere degli esopianeti era già stata prevista teoricamente e dedotta indirettamente da osservazioni precedenti, ma questa ricerca fornisce la prima osservazione diretta e spettroscopica di nubi di silicati in un esopianeta specifico, YSES-1 c. Questo permette di comprendere meglio la composizione atmosferica di un giovane gigante gassoso, confermando la presenza di nuvole di silicati ad alta quota, contenenti pirosseno ricco di ferro oppure una combinazione di bridgmanite (MgSiO3) e forsterite (Mg2SiO4).
Per quanto riguarda il pianeta gemello YSES-1 b, questo lavoro presenta la prima rilevazione di emissione di silicati da un disco circumplanetario, una specie di “mini-Sistema solare” in formazione. Solo due simili dischi circumplanetari sono stati osservati in precedenza, e la nuova ricerca fornisce informazioni dirette sulla composizione e sui processi fisici in questi ambienti: la presenza di granelli di olivina con dimensioni inferiori al micron, infatti, suggerisce un meccanismo di formazione attraverso collisioni di piccoli corpi, detti planetesimi, all’interno del disco. “Studiando questi pianeti riusciamo a capire meglio come si formano i pianeti in generale, un po' come sbirciare nel passato del nostro Sistema solare”, conclude D’Orazi. “I risultati supportano l'idea che la composizione delle nubi negli esopianeti giovani e i dischi circumplanetari svolgano un ruolo cruciale nel determinare la composizione chimica atmosferica. Inoltre, questo studio sottolinea la necessità di modelli atmosferici dettagliati per interpretare i dati osservativi di alta qualità ottenuti con telescopi come JWST”.